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A FORMULA FOR THE BETTI NUMBERS OF COMPACT
LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS

YOZO MATSUSHIMA

1. Let X be a simply connected symmetric Riemannian manifold and let
G be a connected Lie group acting transitively and almost effectively on X as
a group of isometries. We denote by K the isotropy group of G at a point o
of X. If G is compact, it is a well-known theorem of Cartan-Hodge that a
differential p-form is harmonic if and only if it is G-invariant. It follows from
this theorem that the p-th Betti number of X is equal to the multiplicity with
which the trivial representation enters in the linear isotropic representation
of K in the vector space of p-covectors at the point o.

Let us suppose now that G is a connected semi-simple Lie group with
finite center all of whose simple components are non-compact. Let I" be a
discrete subgroup of G such that the quotient /'\G is compact. We denote
by A?(X, I') the vector space of all harmonic p-forms on X which are invari-
ant by I". We know that the dimension of the space #2(X, I') is finite. The
results obtained in the previous papers [4] shows that in several cases the
dimension of A2(X, I") is also equal to the multiplicity with which the trivial
representation enters in the linear isotropic representation of K in the space
of p-covectors at the point o, if the number p/dim X is small.

The purpose of the present paper is to prove a formula which relates the
dimension of the space A?{(X, I') with the decomposition of the unitary re-
presentation of G in the Hilbert space L*(I"\G) (see §2). This formula cor-
responds in a sense to the theorem of Cartan-Hodge and, in fact, if G is
compact and I” reduces to the identity, our formula is equivalent to Cartan-
Hodge Theorem.

We shall also see as an example that, if X is the 3-dimensional hyperbolic
space and if G is SL(2, C) or the proper Lorentz group, the dimension of
hY(X, I') is equal to the multiplicity in L*7\G) of the irreducible unitary
representation U, , of the principal series (see §5).

2. We retain the notations introduced in §1 so that G will denote a con-
nected semi-simple Lie group with finite center all of whose simple compo-
nents are non-compact. The group K is then a maximal compact subgroup
of G. Let g be the Lie algebra of left-invariant vector fields on G, and f the
subalgebra of g corresponding to K. We denote by ¢(X, Y) (X, Y ¢ g) the
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Killing form of the semi-simple Lie algebra g and by m the orthogonal
complement of f in g with respect to . We know that

g=m+f{, mnN =),
[m, m]=1*%, [t, m] =m.

Moreover, ¢(X, X) is positive if X e m, X = 0, and negative if X ef, X 0.
Let {X.}ior...., and {X,},.,;1.... be bases of m and f respectively such
that

§0(Xian)=5ij (ISl,er),
(X, Xp) = — 60 (+1<Za b<n.

In the following we shall make the convention that the indices i, j, . . . will
range from 1 to r, while the indices a, b, ... from r 4 1 to n.

A vector field X ¢ g is left invariant by G and hence by I" so that X is
projectable onto I'\G. In the following we consider the elements X of g as
vector fields on I'\G. We denote by C the differential operator on I'\G de-
fined by

C=yXx— 3 X.
i=1 a=r+1
The operator C is called the Casimir operator of G. We may consider C as
an element of the universal enveloping algebra E(g) of g. It is known that
C is in the center of E(g).

Now let T be a unitary representation of G in a Hilbert space H. A vector
¢ € H is called a regular vector if the function s — T(s)¢ is of class C*. We
denote by W the subspace of all regular vectors of H. It is known that W is
dense in H. Let X € g and let exp X be the 1-parameter subgroup of G cor-
responding to X. For o ¢ W, put T(X)p = [%T(exp tX)go] . Then iT(X)

=0
is a self-adjoint operator with domain . We define the self-adjoint operator
Cr of H with domain W by putting

Cr= Z}l T(X,)* —a§+1T(Xa)2 )
and call it the Casimir operator of the unitary representation 7 of G. If T is
an irreducible unitary representation, there exists a real number 2, such that
Cro = Arp for all pe W.
In the following we shall denote by D, the set of irreducible unitary re-
presentations T of G such that 2, = 0.
We denote by U the unitary representation of G in the Hilbert space
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LXI'\G). The vector space C*(I'\G) of all complex valued C>-functions on
I'\G is a subspace of the space of regular vectors of L,(I"\G), and we have
Cf = — Cyf for all fe C=(I"\G). The representation U decomposes into sum
of a countable number of irreducible unitary representations in which each
irreducible representation enters with a finite multiplicity [1]. We denote by
N(T) the multiplicity in U of an irreducible unitary representation 7 of G.

Now let T be an irreducible unitary representation of G, and T the re-
striction of T onto K. It is well-known (see [2]) that the representation Ty
of K decomposes into sum of a countable number of irreducible representa-
tions in which each irreducible representation enters with a finite multiplicity.
We shall denote by M(Tx; z) the multiplicity in T of an irreducible repre-
sentation = of K.

Let now m¢ be the complexification of m. We denote by adr the repre-

b4 .
sentation of K in the vector space A m¢ induced by the adjoint action of K
in m. Let

2.1 ad? =% + ... + e,

be the decomposition of ad? into a sum of irreducible representations.

Theorem. Let G be a connected semi-simple Lie group with finite center,
K a maximal compact subgroup of G, and I' a discrete subgroup of G with
compact quotient space I'\G. Assume that I’ acts freely on the symmetric
space X = G/K, and let h*(X, I') be the vector space of all harmonic p~forms
on X invariant by I'. Let T be an irreducible unitary representation of G, and
Ty the restriction of T on K. Let N(T) denote the multiplicity of T in the
unitary representation U of G in-the Hilbert space L¥(I'\G), and M(Tx; %)
the multiplicity of the irreducible representation ? of K in Tx. Then

dim h*(X, ) = 3 N(T) (5 M« <),

where D, denotes the set of all irreducible unitary representations of G with
vanishing Casimir operator.

The following sections are devoted to proving this theorem.

3. Let » be a complex valued differential p-form in X invariant by I,
and 7, G — G/K = X the canonical projection of G onto X. Put 7% = 5 o x,.
Then 7 is a p-form on G having the following properties:

77°Lr:77 (TEF): 77°RK=77 (kGK),
i(N7=0 (Yel),

where L,(resp. R,) denotes the left (resp. right) translation of G by g ¢ G,
and i(X) the operator of interior multiplication.
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Now let w¥(l < i< r) be the left invariant 1-form on G such that »i(X})
= 3%. We denote by I an ordered set of p indices i, such that 1 <7 <i, <
+++ < i, < r. Further put

o =™ A N .
Then the p-form 7 is written uniquely in the form
7= ; no’,

where the coefficients 7, are functions on G. Now {«’} form a basis of

? A N N
/A m*¢, and we denote by ad*? the representation of K in A nr*¢ which is
contragredient to ad?. Since the p-form w? is left-invariant, we have o’ o Ry
= ad*?(k)- o’ for all ke K. Put

ad*?(ky-o' = 3 (K’ .
J
We then have o R, = ) ¥ z1(k)(5; « Ry)o” and, since 7 o R; = 7, we get
!

1:(g-k) = 33 o1k Dna(9) (9eG, keK).

J

It follows also from 7 o L, = 5 and w’oL, = o’ that

7,07 9) = 7:9) Gel).

Hence we may consider 5, as a function on I"\G such that

ni(x-k) = ; 7k (X)
for x e I'\G and k ¢ K. We may also consider j as a }7\ m*C-valued function
on I’\G defined by

7100 = D n@e’  (xeI\G).
We have then
@ (x-k)y=ad*P(k~1)j(x) .

Thus there corresponds to a differential p-form » on G/K invariant by [ a
7\ m*C-valued function on I'\G satisfying the condition (1), and conversely,

to each of the functions satisfying (1) corresponds a /'-invariant p-form and
this correspondence is bijective. If the form 7 is of class C= so is the corre-
sponding function 7; if 7 is measurable (with respect to the invariant mea-
sure on G/K), so is 7 (with respect to the invariant measure on I"\G).
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Now let 2, be the Hilbert space of all [-invariant measurable p-forms on
G/K such that

lolt= [ <pp>dv< 4w,
F

where F denotes a compact fundamental domain for I', and <, > the
length of 7 with respect to the Riemannian metric of G/K. We can show that

if » and @ are in £,, and 7 and ¢ are the corresponding A m*C-valued func-
tions, then

@m=szme,
! e

where M is a suitable constant independent of », § [5].
Suppose now that 7 is of class C~, and let 4 denote the laplacian operator
for the p-forms. Then we have

(Ae)l = C'el »
where C denotes the Casimir operator [5]. Therefore we get
o,y =M 3. [ Cor7;dx.
! "G

and ¢ is harmonic if and only if C8;, =0 for all I = (ij, - - -, ip)-
The Killing form ¢ of g defines a positive definite hermitian inner product

P . . .
¥ in A m*¢ invariant by the representation ad*? of K for which {w’} is an
orthonormal basis. We have then

@, 7) =M [ ¢*@0, 7) dx

ne

Let
Am*C=Fr @ ®FF

p R .
be the decomposition of A m*¢ into the sum of mutually orthogonal irredu-
cible K-invariant subspaces. We may assume that the irreducible representa-
tion of K in F¥ is contragredient to 7 (cf. (2.1)). Let P; be the projection

P
of A m*¢ onto F#, and put

7:(x) = P7j(x) xel\G).
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Then 7; is an F¥-valued function on I'\G such that
Ti(xk) = ¥k~ 7:(x%) xeI"\G, kcK).

Let 7, be the [-invariant p-form corresponding to 7;. We then have 7= 3% ;,

and 7 is harmonic if and only if each 7; is harmonic (cf. [5]).
We denote by 4, ; the vector space of all F¥-valued C~-functions f on
I'\G satisfying the conditions:

fx-k) = =¥P(k~Hf(x) (xel'\G,keK),
ci=0.

Then

(3.2) dim k2(X, I) = 3\ dim 4,,, .

4. In this section we shall show that

4.1 dim A4, ;= Y NI)-MTx; 7).
T ¢ Dy

Then the theorem follows from (3.2) and (4.1).
Let {¢*, - - -, {™} be an orthonormal basis of F¥, and {Z,, - - -, Z,} the dual
basis of the dual vector space F; of F¥. We may consider F; as an irreducible

. . »
K-invariant subspace of A m¢ such that

/ﬁmo=pl@...@psp’

and we may assume that the representation of K in F; is 2. To simplify the
notation we write r instead of 2. Let

A0 SEPIN (9l

®

Then we have
o(k)z, = Zp; akHz, .
Let now
L(\G) = F ® H,
be the decomposition of the Hilbert space L*(I"\G) into the direct sum of

irreducible G-invariant closed subspaces, and U, the irreducible unitary re-
presentation of G in H, induced by U. Further, let
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Ho= 2, ®Has

be the decomposition of H, into the direct sum of irreducible K-invariant
closed subspaces. We take an index @ such that U, € D,, and suppose that
the representations of K in H,,, -+ -, Ho 5, (bs = M((Uo)x; t¥)) are equiva-
lent to (= z?). We fix an index b such that 1 < b < b,, and take a basis
{f.}i=1,... m of He , such that

(4-2) Ua(k)f;. = Z a‘x‘(k—l)fp .

I1f {9.},-1, ..., is another basis of H, , which satisfies (4.2), then there exists
a complex number « such that g, = af,(A = 1, - - -, m) by Schur’s lemma.
We define an F¥-valued function f on I'\G by putting

fx) = ; f )¢
Then we have
f(x-k) = e¥(k~Hf(x) .

Let 3 be the [-invariant p-form on G/K corresponding to the function f. We
are going to show that » is harmonic. For this purpose we remark first that
we have

(4.3) (C-h)=0

for all e C*(I"\G) and ¢ € H, . In fact, let W, be the space of regular vectors
of H,, and let ¢ ¢ W, . Since C is equal to the opposite of the Casimir oper-
ator Cy of the representation U, Cy is self-adjoint, and ¢ is in the domain
of Cy, we get (Ch, ¢) = — (h, Cyp). Now Cyp = Cy o = 0, and hence
(Ch, ) = 0. Since W, is dense in H,, we get (Ch, ¢) =0 forall pc H,.

Now let # be a [-invariant p-form of class C*, and @ the corresponding
/’\ m*C_valued function on /"\G. Take an orthonormal basis (&, - - -, £¥) of

R m*¢ such that & = *(A=1, - - -, m), and let g(x) = % f,(x)&. We have
7(x) = f(x) = i f,(0)&, and
(40, 7) =M 3 (C6,, 1) -

Since f, € H,, we get (48, 7) = 0 by (4.3). Thus 5 is orthogonal to the p-
forms 46 and, as is well known, it follows from this that 3 is of class C* and
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harmonic. Therefore the functions f, are of class C* and satisfy the equation
Cf, = 0. It follows then that the function f belongs to 4, ,. Thus we have
shown that to each H, , with U,eD,, 1 < b < M((U,),; 7%), and to each
basis {f,};-1,..... Of H, ; satisfying (4.2) there corresponds a function f, , € 4, ;.
Moreover, f, , is independent of the choice of such a basis {f,} up to a
scalar multiple, and these functions f, ,are linearly independent. Therefore
we get

dim Ap,i 2 Z N(T)M(TK; Tf) .
TeDo

Let conversely f e A, ;. We show that f is a linear combination of the func-
tions f, ». Put

f@) = TR
‘We have then
(4.4 Uk, = 23 ask™f, Cf,=0.

Let P, be the projection operator of L*({'\G) such that P,p = ¢ for ¢ € H,,
and P,p = O for ¢ ¢ H,, b # a. Then f, = >, P,f,. Let W (resp. W,) be the

space of regular vectors of L(/"\G) (resp. H,). Since f, is of class C=, §, be-
longs to W, and moreover P.f, ¢ W, for all a. We have P,Cyp = Cy, Pop
for ¢ ¢ W, and hence we get Cy P.f;, =0, because Cyf, = —Cf,=0. It
follows that P,f, = O for the index a such that U, ¢ D,. Now suppose that
U, ¢ D, and P,f, + O for an index 1. We see from (4.4) that

Uu())Pof, = 25 as(k™)Pof,  (keK).

®

Let F be the linear subspace of H, spanned by the elements P,f,(1=1, - - -,
m). Then F is a K-invariant subspace of H,, and there exists a K-module
homomorphism of F; onto F which maps Z, onto P,f,. Since F % (0) and F;
is an irreducible K-module, this homomorphism is an isomorphism. It follows
then that P.f, are linearly independent, and F is contained in the direct

sum Z H, o(b; = M((Ux; ). Let {fo..:}i-1.....m e @ basis of H, , satis-
=1
fymg (4.2), and put

Pafz = Zb Z ag,lfa,b;,u 4
3

We see easily that the matrix (a})); .1,...» commutes with the matrix
(@5k));, y=r,....m for all k¢ K, and hence (a4 ;) is a scalar matrix. Therefore
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P.f, = Z‘ & fa y,y; With a, € C, and hence f = Z z P.fT* = Z apfa,5. Thus

fisa llnear combination of the functions f, .. We have thus completed the
proof of (4.1) and the theorem is proved.

5. We consider now the special cases where G is the complex unimodu-
lar group SL(2, C) or the proper Lorentz group.

Let G = SL(2, C). A maximal compact subgroup is the special unitary
group SU(2), and put K = SU(2). Then G/K is the 3-dimensional hyperbolic
space.

The irreducible unitary representations of the compact group K are given
as follows:

There is a 1-1 correspondence between the set of equivalence classes of
irreducible unitary representations of K and the set of non-negative integers
and non-negative half-integers. The irreducible representation p, correspond-

ing to % (k: non-negative integer) is realized in the vector space of covariant

symmetric tensors of order £ constructed over the 2-dimensional complex
vector space on which K operators (see [6]).

Now let m be the vector space of 2 X 2 hermitian matrices of trace 0. We
then have ¢ = m + &, [, m] = m, [m, m] = £, and the representation adn
of ¥ in m is absolutely irreducible and equivalent to the representation p,.

The irreducible unitary representation of SL(2, C) are the following [6]:

1. Principal series U, ,. These representations depend on two parame-
ters m and p with m ¢ Z and p ¢ R. U, , is the representation in the Hilbert
space H = L*(C), and the unitary operator U, ,(g) is defind by

(Un, (9)NE@) = (bz + d)™ | bz + d|~"+ie-2f (_aii—c_) ,

bz +d
where
ab
g= ( )e SL(2,C) .
The representations U, , and U, , are equivalent if and only if n = —m
and ¢ = — 0.

The Casimir operator C,, , of U, , is:

cumMl(E (5T -1t

The irreducible representation g, is contained in U, ,|K at most once,

and p; is actually contained in U, ,|K if and only if —'22 equals one of the

numbersﬁ. _k__l _k___z

2
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2. Supplementary series U,(0 < ¢ <2). The representation U, is realized
in the Hilbert space H of complex-valued functions on C, the inner product
(f1» 1,) in H and the unitary operator U.(g) are defined as follows:

(fr f) = f f |2, — 2| 7% f(2)F(20)dz,dz,
cC C

UADN(E) = |bz + d|-2-uf( Zi i ; )

where
g = (‘C’ Z) eSLQ2, C) .
The Casimir operator C, of U, is:

c‘,=.11.6{(%)2—1}-1 0<q<2).

The representation U,|K decomposes as follows:

UK = 2 s -
=0

Now the Casimir Operator C, does not vanish, and the Casimir Operator
C,.(m > 0) vanishes if and only if p = + {m* — 4. As p is real, we have
m > 2. On the other hand, U, ,|K(m > 0) contains p, if and only if m = 2.
Therefore there is one and only one irreducible unitary representation 7' of
SL(2, C) with vanishing Casimir operator such that T|K contains p,, that is,
T =U,,. Moreover, the multiplicity of g, in U, ,|K is 1.

Let now G be the proper Lorentz group. Then G = SL(2, C)/{% 1} and
K = SU2)/{=x 1}. The irreducible unitary representations of K are p,,(k =0,
1,2...), and the irreducible unitary representations ' of G are those of
SL(2, C) satisfying the condition 7(—1) = 1, and therefore these representa-
tions are U, , with even m and U,. Just as in the case of SL(2, C), the only
irreducible unitary representation T of G with vanishing Casimir operator
such that T'|K contains p, is the representation U, ,. The multiplicity of p, in
U, |Kis 1.

From our theorem we then have the following result:

Let G be the complex unimodular group SL(2, C) or the proper Lorentz
group. Let I’ be a discrete subgroup of G such that I'\G is compact. Assume
that I acts freely on the 3-dimensional hyperbolic space G/K. Then the mul-
tiplicity of the irreducible unitary representation U, , of G in the unitary re-
presentation T of G in L¥(I'\G) equals the rank of the finitely generated
abelian group I'|/I"’, I'’ being the commutator subgroup of I.
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