A FORMULA FOR THE BETTI NUMBERS OF COMPACT LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS ## YOZÔ MATSUSHIMA 1. Let X be a simply connected symmetric Riemannian manifold and let G be a connected Lie group acting transitively and almost effectively on X as a group of isometries. We denote by K the isotropy group of G at a point o of X. If G is compact, it is a well-known theorem of Cartan-Hodge that a differential p-form is harmonic if and only if it is G-invariant. It follows from this theorem that the p-th Betti number of X is equal to the multiplicity with which the trivial representation enters in the linear isotropic representation of K in the vector space of p-covectors at the point o. Let us suppose now that G is a connected semi-simple Lie group with finite center all of whose simple components are non-compact. Let Γ be a discrete subgroup of G such that the quotient $\Gamma \setminus G$ is compact. We denote by $h^p(X, \Gamma)$ the vector space of all harmonic p-forms on X which are invariant by Γ . We know that the dimension of the space $h^p(X, \Gamma)$ is finite. The results obtained in the previous papers [4] shows that in several cases the dimension of $h^p(X, \Gamma)$ is also equal to the multiplicity with which the trivial representation enters in the linear isotropic representation of K in the space of p-covectors at the point o, if the number $p/\dim X$ is small. The purpose of the present paper is to prove a formula which relates the dimension of the space $h^p(X, \Gamma)$ with the decomposition of the unitary representation of G in the Hilbert space $L^2(\Gamma \setminus G)$ (see § 2). This formula corresponds in a sense to the theorem of Cartan-Hodge and, in fact, if G is compact and Γ reduces to the identity, our formula is equivalent to Cartan-Hodge Theorem. We shall also see as an example that, if X is the 3-dimensional hyperbolic space and if G is $SL(2, \mathbb{C})$ or the proper Lorentz group, the dimension of $h^1(X, \Gamma)$ is equal to the multiplicity in $L^2(\Gamma \setminus G)$ of the irreducible unitary representation $U_{2,0}$ of the principal series (see § 5). 2. We retain the notations introduced in § 1 so that G will denote a connected semi-simple Lie group with finite center all of whose simple components are non-compact. The group K is then a maximal compact subgroup of G. Let g be the Lie algebra of left-invariant vector fields on G, and f the subalgebra of g corresponding to K. We denote by $\varphi(X, Y)$ $(X, Y \in g)$ the Communicated April 27, 1967. Killing form of the semi-simple Lie algebra g and by m the orthogonal complement of f in g with respect to φ . We know that $$g = m + f$$, $m \cap f = (0)$, $[m, m] = f$, $[f, m] = m$. Moreover, $\varphi(X, X)$ is positive if $X \in \mathbb{m}$, $X \neq 0$, and negative if $X \in \mathbb{f}$, $X \neq 0$. Let $\{X_i\}_{i=1,\dots,r}$ and $\{X_a\}_{a=r+1,\dots,n}$ be bases of \mathbb{m} and \mathbb{f} respectively such that $$\varphi(X_i, X_j) = \delta_{ij} \qquad (1 \le i, j \le r),$$ $$\varphi(X_a, X_b) = -\delta_{ab} \qquad (r+1 \le a, b \le n).$$ In the following we shall make the convention that the indices i, j, \ldots will range from 1 to r, while the indices a, b, \ldots from r + 1 to n. A vector field $X \in \mathfrak{g}$ is left invariant by G and hence by Γ so that X is projectable onto $\Gamma \backslash G$. In the following we consider the elements X of \mathfrak{g} as vector fields on $\Gamma \backslash G$. We denote by C the differential operator on $\Gamma \backslash G$ defined by $$C = \sum_{i=1}^{r} X_i^2 - \sum_{\alpha=r+1}^{n} X_{\alpha}^2$$. The operator C is called the Casimir operator of G. We may consider C as an element of the universal enveloping algebra E(g) of g. It is known that C is in the center of E(g). Now let T be a unitary representation of G in a Hilbert space H. A vector $\varphi \in H$ is called a *regular* vector if the function $s \to T(s)\varphi$ is of class C^{∞} . We denote by W the subspace of all regular vectors of H. It is known that W is dense in H. Let $X \in \mathfrak{g}$ and let $\exp tX$ be the 1-parameter subgroup of G cor- responding to X. For $$\varphi \in W$$, put $T(X)\varphi = \left[\frac{d}{dt}T(\exp tX)\varphi\right]_{t=0}$. Then $iT(X)$ is a self-adjoint operator with domain W. We define the self-adjoint operator C_T of H with domain W by putting $$C_T = \sum_{i=1}^r T(X_i)^2 - \sum_{a=r+1}^n T(X_a)^2$$, and call it the Casimir operator of the unitary representation T of G. If T is an irreducible unitary representation, there exists a real number λ_T such that $C_T \varphi = \lambda_T \varphi$ for all $\varphi \in W$. In the following we shall denote by D_0 the set of irreducible unitary representations T of G such that $\lambda_T = 0$. We denote by U the unitary representation of G in the Hilbert space $L^2(\Gamma \backslash G)$. The vector space $C^{\infty}(\Gamma \backslash G)$ of all complex valued C^{∞} -functions on $\Gamma \backslash G$ is a subspace of the space of regular vectors of $L_2(\Gamma \backslash G)$, and we have $Cf = -C_U f$ for all $f \in C^{\infty}(\Gamma \backslash G)$. The representation U decomposes into sum of a countable number of irreducible unitary representations in which each irreducible representation enters with a finite multiplicity [1]. We denote by N(T) the multiplicity in U of an irreducible unitary representation T of G. Now let T be an irreducible unitary representation of G, and T_K the restriction of T onto K. It is well-known (see [2]) that the representation T_K of K decomposes into sum of a countable number of irreducible representations in which each irreducible representation enters with a finite multiplicity. We shall denote by $M(T_K; \tau)$ the multiplicity in T_K of an irreducible representation τ of K. Let now m^c be the complexification of m. We denote by ad^p the representation of K in the vector space \bigwedge^p m^c induced by the adjoint action of K in m. Let $$(2.1) ad^p = \tau_1^p + \cdots + \tau_{s_n}^p$$ be the decomposition of ad^p into a sum of irreducible representations. **Theorem.** Let G be a connected semi-simple Lie group with finite center, K a maximal compact subgroup of G, and Γ a discrete subgroup of G with compact quotient space $\Gamma \backslash G$. Assume that Γ acts freely on the symmetric space X = G/K, and let $h^p(X, \Gamma)$ be the vector space of all harmonic p-forms on X invariant by Γ . Let T be an irreducible unitary representation of G, and T_K the restriction of T on K. Let N(T) denote the multiplicity of T in the unitary representation U of G in the Hilbert space $L^2(\Gamma \backslash G)$, and $M(T_K; \tau_i^p)$ the multiplicity of the irreducible representation τ_i^p of K in T_K . Then $$\dim h^p(X, \Gamma) = \sum_{T \in D_0} N(T) \left(\sum_{i=1}^{s_p} M(T_K; \tau_i^p) \right),$$ where D_0 denotes the set of all irreducible unitary representations of G with vanishing Casimir operator. The following sections are devoted to proving this theorem. 3. Let η be a complex valued differential p-form in X invariant by Γ , and $\pi_0: G \to G/K = X$ the canonical projection of G onto X. Put $\tilde{\eta} = \eta \circ \pi_0$. Then $\tilde{\eta}$ is a p-form on G having the following properties: $$\begin{split} \tilde{\eta} \circ L_{\gamma} &= \tilde{\eta} \ (\gamma \in \varGamma) \;, \qquad \tilde{\eta} \circ R_K = \tilde{\eta} \ (k \in K) \;, \\ i(Y)\tilde{\eta} &= 0 \ (Y \in \mathfrak{f}) \;, \end{split}$$ where L_g (resp. R_g) denotes the left (resp. right) translation of G by $g \in G$, and i(X) the operator of interior multiplication. Now let $\omega^i (1 \le i \le r)$ be the left invariant 1-form on G such that $\omega^i (X_j) = \delta^i_j$. We denote by I an ordered set of p indices i_s such that $1 \le i_1 < i_2 < \cdots < i_p \le r$. Further put $$\omega^I = \omega^{i_1} \wedge \cdots \wedge \omega^{i_p}$$. Then the p-form $\tilde{\eta}$ is written uniquely in the form $$\tilde{\eta} = \sum_{I} \eta_{I} \omega^{I}$$, where the coefficients η_I are functions on G. Now $\{\omega^I\}$ form a basis of $\bigwedge^p \mathfrak{m}^* c$, and we denote by ad^{*p} the representation of K in $\bigwedge^p \mathfrak{m}^* c$ which is contragredient to ad^p . Since the p-form ω^I is left-invariant, we have $\omega^I \circ R_k = ad^{*p}(k) \cdot \omega^I$ for all $k \in K$. Put $$ad^{*p}(k) \cdot \omega^I = \sum_J \tau^I_J(k)\omega^J$$. We then have $\tilde{\eta} \circ R_k = \sum_I \sum_J \tau_J^I(k) (\eta_I \circ R_k) \omega^J$ and, since $\tilde{\eta} \circ R_k = \tilde{\eta}$, we get $$\eta_I(g \cdot k) = \sum_J \tau_I^J(k^{-1}) \eta_J(g) \qquad (g \in G, \ k \in K).$$ It follows also from $\tilde{\eta} \circ L_r = \tilde{\eta}$ and $\omega^I \circ L_r = \omega^I$ that $$\eta_I(\gamma \cdot g) = \eta_I(g) \qquad (\gamma \in \Gamma) .$$ Hence we may consider η_I as a function on $\Gamma \backslash G$ such that $$\eta_I(x \cdot k) = \sum_J \tau_I^J(k^{-1}) \eta_J(x)$$ for $x \in \Gamma \setminus G$ and $k \in K$. We may also consider $\tilde{\eta}$ as a \bigwedge^{p} m^*c -valued function on $\Gamma \setminus G$ defined by $$\tilde{\eta}(x) = \sum_{I} \eta_{I}(x) \omega^{I} \qquad (x \in \Gamma \backslash G).$$ We have then (1) $$\tilde{\eta}(x \cdot k) = ad^{*p}(k^{-1})\tilde{\eta}(x).$$ Thus there corresponds to a differential p-form η on G/K invariant by Γ a $^p M^*c$ -valued function on $\Gamma \backslash G$ satisfying the condition (1), and conversely, to each of the functions satisfying (1) corresponds a Γ -invariant p-form and this correspondence is bijective. If the form η is of class C^∞ so is the corresponding function $\tilde{\eta}$; if η is measurable (with respect to the invariant measure on G/K), so is $\tilde{\eta}$ (with respect to the invariant measure on $\Gamma \backslash G$). Now let Ω_p be the Hilbert space of all Γ -invariant measurable p-forms on G/K such that $$||\eta||^2 = \int_{\mathbb{F}} <\eta, \, \eta > dv < + \infty,$$ where F denotes a compact fundamental domain for Γ , and <, > the length of η with respect to the Riemannian metric of G/K. We can show that if η and θ are in Ω_p , and $\tilde{\eta}$ and $\tilde{\theta}$ are the corresponding $\overset{p}{\wedge}$ m* c -valued functions, then $$(\theta, \eta) = M \sum_{I} \int_{I \setminus G} \theta_{I} \cdot \overline{\eta}_{I} dx,$$ where M is a suitable constant independent of η , θ [5]. Suppose now that η is of class C^{∞} , and let Δ denote the laplacian operator for the p-forms. Then we have $$(\Delta\theta)_I = C \cdot \theta_I \,,$$ where C denotes the Casimir operator [5]. Therefore we get $$(\varDelta\theta,\,\eta)=M\,\sum_{I}\int_{I\backslash G}C\theta_{I}\cdot\overline{\eta}_{I}\,dx\;.$$ and θ is harmonic if and only if $C\theta_I = 0$ for all $I = (i_1, \dots, i_p)$. The Killing form φ of g defines a positive definite hermitian inner product φ^* in $\bigwedge^p \mathfrak{m}^{*c}$ invariant by the representation ad^{*p} of K for which $\{\omega^I\}$ is an orthonormal basis. We have then $$(\theta, \eta) = M \int_{\widetilde{T} \setminus G} \varphi^*(\widetilde{\theta}(x), \widetilde{\eta}(\widetilde{x})) dx.$$ Let $$^{p} \wedge \mathfrak{m}^{*c} = F_{\scriptscriptstyle 1}^{*} \oplus \cdots \oplus F_{\scriptscriptstyle s_{p}}^{*}$$ be the decomposition of $\bigwedge^p m^{*c}$ into the sum of mutually orthogonal irreducible K-invariant subspaces. We may assume that the irreducible representation of K in F_i^* is contragredient to τ_i^p (cf. (2.1)). Let P_i be the projection of $\bigwedge^p m^{*c}$ onto F_i^* , and put $$\tilde{\eta}_i(x) = P_i \tilde{\eta}(x) \qquad (x \in \Gamma \backslash G) \; .$$ Then $\tilde{\eta}_i$ is an F_i^* -valued function on $\Gamma \backslash G$ such that $$\tilde{\eta}_i(xk) = \tau^{*p}_i(k^{-1})\tilde{\eta}_i(x) \qquad (x \in \Gamma \backslash G, k \in K).$$ Let η_i be the Γ -invariant p-form corresponding to $\tilde{\eta}_i$. We then have $\eta = \sum_i \eta_i$, and η is harmonic if and only if each η_i is harmonic (cf. [5]). We denote by $A_{p,i}$ the vector space of all F_i^* -valued C^{∞} -functions f on $\Gamma \setminus G$ satisfying the conditions: $$f(x \cdot k) = \tau_i^{*p}(k^{-1})f(x) \qquad (x \in \Gamma \setminus G, k \in K),$$ $$Cf = 0.$$ Then (3.2) $$\dim h^{p}(X, \Gamma) = \sum_{i=1}^{s_{p}} \dim A_{p,i}.$$ 4. In this section we shall show that (4.1) $$\dim A_{p,i} = \sum_{T \in D_n} N(T) \cdot M(T_K; \tau_i^p).$$ Then the theorem follows from (3.2) and (4.1). Let $\{\zeta^1, \dots, \zeta^m\}$ be an orthonormal basis of F_i^* , and $\{Z_1, \dots, Z_m\}$ the dual basis of the dual vector space F_i of F_i^* . We may consider F_i as an irreducible K-invariant subspace of $\bigwedge^p m^c$ such that $$^{p} \wedge \mathfrak{m}^{c} = F_{1} \oplus \cdots \oplus F_{s_{m}},$$ and we may assume that the representation of K in F_i is τ_i^p . To simplify the notation we write τ instead of τ_i^p . Let $$\tau^*(k)\zeta^{\lambda} = \sum_{\mu} a^{\lambda}_{\mu}(k)\zeta^{\mu}$$. Then we have $$\tau(k)z_{\lambda} = \sum_{\mu} a^{\mu}_{\lambda}(k^{-1})z_{\mu}.$$ Let now $$L^{2}(arGamma ackslash G) = \sum\limits_{a=1}^{\infty} \oplus H_{a}$$ be the decomposition of the Hilbert space $L^2(\Gamma \setminus G)$ into the direct sum of irreducible G-invariant closed subspaces, and U_a the irreducible unitary representation of G in H_a induced by U. Further, let $$H_a = \sum_{b=1}^{\infty} \oplus H_{a,b}$$ be the decomposition of H_a into the direct sum of irreducible K-invariant closed subspaces. We take an index a such that $U_a \in D_0$, and suppose that the representations of K in $H_{a,1}, \dots, H_{a,b_i}(b_i = M((U_a)_K; \tau_i^p))$ are equivalent to $\tau(=\tau_i^p)$. We fix an index b such that $1 \le b \le b_i$, and take a basis $\{f_i\}_{i=1,\dots,m}$ of $H_{a,b}$ such that $$(4.2) U_a(k)f_{\lambda} = \sum_{\mu} a_{\lambda}^{\mu}(k^{-1})f_{\mu}.$$ If $\{g_{\lambda}\}_{\lambda=1,\dots,m}$ is another basis of $H_{a,b}$ which satisfies (4.2), then there exists a complex number α such that $g_{\lambda}=\alpha f_{\lambda}(\lambda=1,\dots,m)$ by Schur's lemma. We define an F_i^* -valued function f on $\Gamma \setminus G$ by putting $$f(x) = \sum_{\lambda} f_{\lambda}(x) \zeta^{\lambda}$$. Then we have $$f(x \cdot k) = \tau^*(k^{-1})f(x) .$$ Let η be the Γ -invariant p-form on G/K corresponding to the function f. We are going to show that η is harmonic. For this purpose we remark first that we have $$(C \cdot h, \varphi) = 0$$ for all $h \in C^{\infty}(\Gamma \backslash G)$ and $\varphi \in H_a$. In fact, let W_a be the space of regular vectors of H_a , and let $\varphi \in W_a$. Since C is equal to the opposite of the Casimir operator C_U of the representation U, C_U is self-adjoint, and φ is in the domain of C_U , we get $(Ch, \varphi) = -(h, C_U\varphi)$. Now $C_U\varphi = C_{U_a}\varphi = 0$, and hence $(Ch, \varphi) = 0$. Since W_a is dense in H_a , we get $(Ch, \varphi) = 0$ for all $\varphi \in H_a$. Now let θ be a Γ -invariant p-form of class C^{∞} , and $\tilde{\theta}$ the corresponding $\bigwedge^p m^{*c}$ -valued function on $\Gamma \setminus G$. Take an orthonormal basis (ξ^1, \dots, ξ^N) of $\bigwedge^p m^{*c}$ such that $\xi^2 = \zeta^2(\lambda = 1, \dots, m)$, and let $\tilde{\theta}(x) = \sum_{k=1}^N \theta_k(x)\xi^k$. We have $\tilde{\eta}(x) = f(x) = \sum_{k=1}^m f_k(x)\xi^k$, and $$(\Delta\theta, \eta) = M \sum_{\lambda=1}^{m} (C\theta_{\lambda}, f_{\lambda}).$$ Since $f_{\lambda} \in H_a$, we get $(\Delta \theta, \eta) = 0$ by (4.3). Thus η is orthogonal to the p-forms $\Delta \theta$ and, as is well known, it follows from this that η is of class C^{∞} and harmonic. Therefore the functions f_{λ} are of class C^{∞} and satisfy the equation $Cf_{\lambda}=0$. It follows then that the function f belongs to $A_{p,i}$. Thus we have shown that to each $H_{a,b}$ with $U_a \in D_0$, $1 \le b \le M((U_a)_k; \tau_i^p)$, and to each basis $\{f_{\lambda}\}_{\lambda=1,\dots,m}$ of $H_{a,b}$ satisfying (4.2) there corresponds a function $f_{a,b} \in A_{p,i}$. Moreover, $f_{a,b}$ is independent of the choice of such a basis $\{f_{\lambda}\}$ up to a scalar multiple, and these functions $f_{a,b}$ are linearly independent. Therefore we get $$\dim A_{p,i} \geq \sum_{T \in D_0} N(T) M(T_K; \tau_i^p)$$. Let conversely $f \in A_{p,i}$. We show that f is a linear combination of the functions $f_{a,b}$. Put $$f(x) = \sum_{i} f_{\lambda}(x) \zeta^{\lambda}$$. We have then (4.4) $$U(k)f_{\lambda} = \sum_{\mu} a^{\mu}_{\lambda}(k^{-1})f_{\mu}, \qquad Cf_{\lambda} = 0.$$ Let P_a be the projection operator of $L^2(\Gamma \backslash G)$ such that $P_a \varphi = \varphi$ for $\varphi \in H_a$, and $P_a \varphi = 0$ for $\varphi \in H_b$, $b \neq a$. Then $f_\lambda = \sum_a P_a f_\lambda$. Let W (resp. W_a) be the space of regular vectors of $L^2(\Gamma \backslash G)$ (resp. H_a). Since f_λ is of class C^∞ , f_λ belongs to W, and moreover $P_a f_\lambda \in W_a$ for all a. We have $P_a C_U \varphi = C_{Ua} P_a \varphi$ for $\varphi \in W$, and hence we get $C_{Ua} P_a f_\lambda = 0$, because $C_U f_\lambda = -C f_\lambda = 0$. It follows that $P_a f_\lambda = 0$ for the index a such that $U_a \notin D_0$. Now suppose that $U_a \in D_0$ and $P_a f_\lambda \neq 0$ for an index λ . We see from (4.4) that $$U_a(k)P_af_\lambda = \sum_\mu a^\mu_\lambda(k^{-1})P_af_\mu \qquad (k \in K)$$. Let F be the linear subspace of H_a spanned by the elements $P_a f_{\lambda}(\lambda = 1, \dots, m)$. Then F is a K-invariant subspace of H_a , and there exists a K-module homomorphism of F_i onto F which maps Z_i onto $P_a f_i$. Since $F \neq (0)$ and F_i is an irreducible K-module, this homomorphism is an isomorphism. It follows then that $P_a f_{\lambda}$ are linearly independent, and F is contained in the direct sum $\sum_{b=1}^{b_i} H_{a,b}(b_i = M((U_a)_K; \tau_i^p))$. Let $\{f_{a,b;\lambda}\}_{\lambda=1,\dots,m}$ be a basis of $H_{a,b}$ satisfying (4.2), and put $$P_{a}f_{\lambda} = \sum_{b} \sum_{\mu} \alpha^{\mu}_{b,\lambda} f_{a,b;\mu}$$. We see easily that the matrix $(\alpha_{b,\lambda}^{\mu})_{\lambda,\mu=1,\dots,m}$ commutes with the matrix $(a_{\lambda}^{\mu}(k))_{\lambda,\mu=1,\dots,m}$ for all $k \in K$, and hence $(\alpha_{b,\lambda}^{\mu})$ is a scalar matrix. Therefore $P_a f_{\lambda} = \sum_{b} \alpha_b \cdot f_{a,b;\lambda}$ with $\alpha_b \in C$, and hence $f = \sum_{a} \sum_{\lambda} P_a f_{\lambda} \zeta^{\lambda} = \sum_{a,b} \alpha_b f_{a,b}$. Thus f is a linear combination of the functions $f_{a,b}$. We have thus completed the proof of (4.1) and the theorem is proved. 5. We consider now the special cases where G is the complex unimodular group SL(2, C) or the proper Lorentz group. Let $G = SL(2, \mathbb{C})$. A maximal compact subgroup is the special unitary group SU(2), and put K = SU(2). Then G/K is the 3-dimensional hyperbolic space. The irreducible unitary representations of the compact group K are given as follows: There is a 1-1 correspondence between the set of equivalence classes of irreducible unitary representations of K and the set of non-negative integers and non-negative half-integers. The irreducible representation ρ_k corresponding to $\frac{k}{2}$ (k: non-negative integer) is realized in the vector space of covariant symmetric tensors of order k constructed over the 2-dimensional complex vector space on which K operators (see [6]). Now let m be the vector space of 2×2 hermitian matrices of trace 0. We then have g = m + f, [f, m] = m, [m, m] = f, and the representation ad_m of f in m is absolutely irreducible and equivalent to the representation ρ_2 . The irreducible unitary representation of SL(2, C) are the following [6]: 1. Principal series $U_{m,\rho}$. These representations depend on two parameters m and ρ with $m \in \mathbb{Z}$ and $\rho \in \mathbb{R}$. $U_{m,\rho}$ is the representation in the Hilbert space $H = L^2(\mathbb{C})$, and the unitary operator $U_{m,\rho}(g)$ is defind by $$(U_{m,\rho}(g)f)(z) = (bz + d)^m |bz + d|^{-m+i\rho-2}f(\frac{az + c}{bz + d}),$$ where $$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, C)$$. The representations $U_{m,\rho}$ and $U_{n,\sigma}$ are equivalent if and only if n=-m and $\sigma=-\rho$. The Casimir operator $C_{m,o}$ of $U_{m,o}$ is: $$C_{m,\rho} = \frac{1}{16} \left\{ \left(\frac{m}{2} \right)^2 - \left(\frac{\rho}{2} \right)^2 - 1 \right\} \cdot 1 .$$ The irreducible representation ρ_k is contained in $U_{m,\rho}|K$ at most once, and ρ_k is actually contained in $U_{m,\rho}|K$ if and only if $\frac{m}{2}$ equals one of the numbers $\frac{k}{2}$, $\frac{k}{2} - 1$, $\frac{k}{2} - 2$, \cdots . 2. Supplementary series $U_{\sigma}(0 < \sigma < 2)$. The representation U_{σ} is realized in the Hilbert space H of complex-valued functions on C, the inner product (f_1, f_2) in H and the unitary operator $U_{\sigma}(g)$ are defined as follows: $$(f_1, f_2) = \int_C \int_C |z_1 - z_2|^{-2+\sigma} f_1(z_1) \overline{f_2(z_2)} dz_1 dz_2,$$ $$(U_{\sigma}(g)f)(z) = |bz + d|^{-2-\sigma} f\left(\frac{az + c}{bz + d}\right),$$ where $$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, C) .$$ The Casimir operator C_a of U_a is: $$C_{\sigma} = \frac{1}{16} \left\{ \left(\frac{\sigma}{2} \right)^2 - 1 \right\} \cdot 1 \qquad (0 < \sigma < 2).$$ The representation $U_{\sigma}|K$ decomposes as follows: $$U_{\sigma}|K=\sum_{k=0}^{\infty}\rho_{2k}$$. Now the Casimir Operator C_{σ} does not vanish, and the Casimir Operator $C_{m,\rho}(m \ge 0)$ vanishes if and only if $\rho = \pm \sqrt{m^2 - 4}$. As ρ is real, we have $m \ge 2$. On the other hand, $U_{m,\rho}|K(m \ge 0)$ contains ρ_2 if and only if m = 2. Therefore there is one and only one irreducible unitary representation T of SL(2, C) with vanishing Casimir operator such that T|K contains ρ_2 , that is, $T = U_{2,0}$. Moreover, the multiplicity of ρ_2 in $U_{2,0}|K$ is 1. Let now G be the proper Lorentz group. Then $G \cong SL(2, C)/\{\pm 1\}$ and $K \cong SU(2)/\{\pm 1\}$. The irreducible unitary representations of K are $\rho_{2k}(k=0, 1, 2\cdots)$, and the irreducible unitary representations T of G are those of SL(2, C) satisfying the condition T(-1) = 1, and therefore these representations are $U_{m,\rho}$ with even m and U_{σ} . Just as in the case of SL(2, C), the only irreducible unitary representation T of G with vanishing Casimir operator such that $T \mid K$ contains ρ_2 is the representation $U_{2,0}$. The multiplicity of ρ_2 in $U_{2,0} \mid K$ is 1. From our theorem we then have the following result: Let G be the complex unimodular group $SL(2, \mathbb{C})$ or the proper Lorentz group. Let Γ be a discrete subgroup of G such that $\Gamma \setminus G$ is compact. Assume that Γ acts freely on the 3-dimensional hyperbolic space G/K. Then the multiplicity of the irreducible unitary representation $U_{2,0}$ of G in the unitary representation T of T of T of T in T of T equals the rank of the finitely generated abelian group T/Γ , T being the commutator subgroup of T. ## Bibliography - I. M. Gelfand & I. Pyateckii-Sapiro, Theory of representations and theory of automorphic functions, Amer. Math. Soc. Transl. (2) 26 (1963) 173-200. - [2] R. Godement, A theory of spherical functions, Trans. Amer. Math. Soc. 73 (1950) 496-556. - [3] R. P. Langlands, Dimension of spaces of automorphic forms, Proc. Sympos. Pure Math., Amer. Math. Soc. 9 (1966) 253-257. - [4] Y. Matsushima, a) On the first Betti number of compact quotient spaces of higher dimensional symmetric spaces, Ann. of Math. 75 (1962) 312-330; b) On Betti numbers of compact, locally symmetric Riemann manifolds, Osaka Math. J. 14 (1962) 1-20. - [5] Y. Matsushima & S. Murakami, a) On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963) 365-416; b) On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math. 2 (1965) 1-35. - [6] M. A. Naimark, Les représentations linéaires du groupe de Lorentz, Dunod, Paris, 1962. University of Notre Dame